Based on a discussion in this GitHub Issue, I’ve initiated some tissue-specific transcriptome assemblies with our current geoduck data.
Job was run on Mox and rsync
ed to my folder on Gannet.
FastA index files were generated separately via samtools faidx Trinity.fasta
(didn’t think about it at the time so did not add to SBATCH script).
SBATCH script:
- 20190215_geo_trinity_juvD5.sh(GitHub)
#!/bin/bash
## Job Name
#SBATCH --job-name=trinity_20190215
## Allocation Definition
#SBATCH --account=coenv
#SBATCH --partition=coenv
## Resources
## Nodes
#SBATCH --nodes=2
## Walltime (days-hours:minutes:seconds format)
#SBATCH --time=5-00:00:00
## Memory per node
#SBATCH --mem=120G
##turn on e-mail notification
#SBATCH --mail-type=ALL
#SBATCH --mail-user=samwhite@uw.edu
## Specify the working directory for this job
#SBATCH --workdir=/gscratch/scrubbed/samwhite/outputs/20190215_trinity_geoduck_juvD5_RNAseq
# Load Python Mox module for Python module availability
module load intel-python3_2017
# Document programs in PATH (primarily for program version ID)
date >> system_path.log
echo "" >> system_path.log
echo "System PATH for $SLURM_JOB_ID" >> system_path.log
echo "" >> system_path.log
printf "%0.s-" {1..10} >> system_path.log
echo ${PATH} | tr : \\n >> system_path.log
data_dir=/gscratch/scrubbed/samwhite/data/P_generosa/RNAseq
trinity_dir=/gscratch/srlab/programs/Trinity-v2.8.3
assembly_stats=assembly_stats.txt
# Run Trinity
${trinity_dir}/Trinity \
--trimmomatic \
--seqType fq \
--max_memory 120G \
--CPU 56 \
--left \
${data_dir}/Geoduck-larvae-day5-RNA-EPI-99-1_S8_L001_R1_001.fastq.gz,\
${data_dir}/Geoduck-larvae-day5-RNA-EPI-99-2_S16_L002_R1_001.fastq.gz,\
${data_dir}/Geoduck-larvae-day5-RNA-EPI-99-3_S24_L003_R1_001.fastq.gz,\
${data_dir}/Geoduck-larvae-day5-RNA-EPI-99-4_S32_L004_R1_001.fastq.gz,\
${data_dir}/Geoduck-larvae-day5-RNA-EPI-99-5_S40_L005_R1_001.fastq.gz,\
${data_dir}/Geoduck-larvae-day5-RNA-EPI-99-6_S48_L006_R1_001.fastq.gz,\
${data_dir}/Geoduck-larvae-day5-RNA-EPI-99-7_S56_L007_R1_001.fastq.gz,\
${data_dir}/Geoduck-larvae-day5-RNA-EPI-99-8_S64_L008_R1_001.fastq.gz \
--right \
${data_dir}/Geoduck-larvae-day5-RNA-EPI-99-1_S8_L001_R2_001.fastq.gz,\
${data_dir}/Geoduck-larvae-day5-RNA-EPI-99-2_S16_L002_R2_001.fastq.gz,\
${data_dir}/Geoduck-larvae-day5-RNA-EPI-99-3_S24_L003_R2_001.fastq.gz,\
${data_dir}/Geoduck-larvae-day5-RNA-EPI-99-4_S32_L004_R2_001.fastq.gz,\
${data_dir}/Geoduck-larvae-day5-RNA-EPI-99-5_S40_L005_R2_001.fastq.gz,\
${data_dir}/Geoduck-larvae-day5-RNA-EPI-99-6_S48_L006_R2_001.fastq.gz,\
${data_dir}/Geoduck-larvae-day5-RNA-EPI-99-7_S56_L007_R2_001.fastq.gz,\
${data_dir}/Geoduck-larvae-day5-RNA-EPI-99-8_S64_L008_R2_001.fastq.gz
# Assembly stats
${trinity_dir}/util/TrinityStats.pl trinity_out_dir/Trinity.fasta \
> ${assembly_stats}
RESULTS
Output folder:
Trinity assembly:
20190215_trinity_geoduck_juvD5_RNAseq/trinity_out_dir/Trinity.fasta(FastA)
FastA index (
samtools faidx
):
Assembly stats:
################################
## Counts of transcripts, etc.
################################
Total trinity 'genes': 235162
Total trinity transcripts: 402320
Percent GC: 36.64
########################################
Stats based on ALL transcript contigs:
########################################
Contig N10: 4323
Contig N20: 2946
Contig N30: 2166
Contig N40: 1619
Contig N50: 1189
Median contig length: 388
Average contig: 722.92
Total assembled bases: 290845329
#####################################################
## Stats based on ONLY LONGEST ISOFORM per 'GENE':
#####################################################
Contig N10: 3483
Contig N20: 2214
Contig N30: 1523
Contig N40: 1057
Contig N50: 733
Median contig length: 316
Average contig: 549.73
Total assembled bases: 129274787
Will likely run the resulting assembly through Trinnotate and Transdecoder to try to get a more refined assembly.
Will also run BUSCO on the refined assembly to evaluate its completeness.
Will also explore combining all of the geoduck tissue-specific transcriptome assemblies using DRAP (mentioned/suggested by Katherine in that GitHub issue).