This is a quick and dirty (i.e. no adaptor/quality trimming) assessment of all of our Ostrea lurida bisulfite sequencing efforts to date in order to get a rough idea of the methylation mapping, per this GitHub issue. Ran Bismark on Mox on a series of subset of the reads:
- 100k
- 500k
- 1M
- 2M
- 5M
- 10M
#!/bin/bash
## Job Name
#SBATCH --job-name=bismark
## Allocation Definition
#SBATCH --account=coenv
#SBATCH --partition=coenv
## Resources
## Nodes
#SBATCH --nodes=1
## Walltime (days-hours:minutes:seconds format)
#SBATCH --time=10-00:00:00
## Memory per node
#SBATCH --mem=120G
##turn on e-mail notification
#SBATCH --mail-type=ALL
#SBATCH --mail-user=samwhite@uw.edu
## Specify the working directory for this job
#SBATCH --workdir=/gscratch/scrubbed/samwhite/outputs/20190224_olurida_se_bismark
# Load Python Mox module for Python module availability
module load intel-python3_2017
# Document programs in PATH (primarily for program version ID)
date >> system_path.log
echo "" >> system_path.log
echo "System PATH for $SLURM_JOB_ID" >> system_path.log
echo "" >> system_path.log
printf "%0.s-" {1..10} >> system_path.log
echo ${PATH} | tr : \\n >> system_path.log
# Directories and programs
wd=$(pwd)
bismark_dir="/gscratch/srlab/programs/Bismark-0.19.0"
bowtie2_dir="/gscratch/srlab/programs/bowtie2-2.3.4.1-linux-x86_64/"
samtools="/gscratch/srlab/programs/samtools-1.9/samtools"
reads_dir="/gscratch/scrubbed/samwhite/data/O_lurida/BSseq/"
## genomes
genome="/gscratch/srlab/sam/data/O_lurida/genomes/Olurida_v081/oly_v081_bismark_genome"
## An array of subsets of reads to use in bismark:
## 100k, 500k, 1M, 2M, 5M, 10M
subset_array=(100000 500000 1000000 2000000 5000000 10000000)
## FastQ Files
se_reads="/gscratch/scrubbed/samwhite/data/O_lurida/BSseq/olur_bsseq_all_R1.fastq.gz"
## FastQ files lists
R1_list="${wd}/olur_bsseq_all_R1.list"
# Check for existence of previous concatenation
# If they exist, delete them
for file in ${se_reads} ${R1_list}
do
if [ -e ${file} ]; then
rm ${file}
fi
done
# Concatenate R1 reads and generate lists of FastQs
for fastq in ${reads_dir}*R1*.gz
do
echo ${fastq} >> ${R1_list}
cat ${fastq} >> ${se_reads}
done
# Run bismark using bisulftie-converted genome
for subset in ${subset_array[@]}
do
mkdir subset_${subset}
cd subset_${subset}
${bismark_dir}/bismark \
--path_to_bowtie ${bowtie2_dir} \
--genome ${genome} \
--score_min L,0,-0.6 \
-u ${subset} \
-p 28 \
${se_reads} \
2> subset_${subset}_summary.txt
# Deduplicate bam files
${bismark_dir}/deduplicate_bismark \
--bam \
--single \
*.bam
# Methylation extraction
${bismark_dir}/bismark_methylation_extractor \
--bedgraph \
--counts \
--scaffolds \
--remove_spaces \
--multicore 28 \
--buffer_size 75% \
*deduplicated.bam
# Bismark processing report
${bismark_dir}/bismark2report
#Bismark summary report
${bismark_dir}/bismark2summary
# Sort files for methylkit and IGV
find *deduplicated.bam \
| xargs basename -s .bam \
| xargs -I{} ${samtools} \
sort \
--threads 28 \
{}.bam \
-o {}.sorted.bam
# Index sorted files for IGV
# The "-@ 56" below specifies number of CPU threads to use.
find *.sorted.bam \
| xargs basename -s .sorted.bam \
| xargs -I{} ${samtools} \
index -@ 28 \
{}.sorted.bam
cd ${wd}
done
RESULTS
Output folder:
Bedgraphs for each subset:
- There is a bedgraph for each single-end subset. I will not link them all. Here’s an example for the 10,000,000 subset:
Code used to pull mapping efficiencies:
find ./*_olurida_* -name "subset*.txt" -print0 | xargs -0 grep "Mapping efficiency"
./20190224_olurida_se_bismark/subset_500000/subset_500000_summary.txt:Mapping efficiency: 54.4%
./20190224_olurida_se_bismark/subset_10000000/subset_10000000_summary.txt:Mapping efficiency: 53.8%
./20190224_olurida_se_bismark/subset_1000000/subset_1000000_summary.txt:Mapping efficiency: 54.5%
./20190224_olurida_se_bismark/subset_5000000/subset_5000000_summary.txt:Mapping efficiency: 54.3%
./20190224_olurida_se_bismark/subset_100000/subset_100000_summary.txt:Mapping efficiency: 54.2%
./20190224_olurida_se_bismark/subset_2000000/subset_2000000_summary.txt:Mapping efficiency: 54.4%
Reads Subset | Mapping Efficiency (%) |
---|---|
100000 | 54.2 |
500000 | 54.4 |
1000000 | 54.5 |
2000000 | 54,4 |
5000000 | 54.3 |
10000000 | 53.8 |
Read Type (PE or SE) | Reads Subset | C methylated in CpG context (%) |
---|---|---|
SE | 100000 | 30.1 |
SE | 500000 | 30.2 |
SE | 1000000 | 30.2 |
SE | 2000000 | 30.4 |
SE | 5000000 | 30.4 |
SE | 10000000 | 30.3 |