Annotation
Intro (Blast)
Blast is a key component of working with lesser studied taxa. Here are some resources to help with this.
First off, you should be familar with the command line interface and bash
Blast Notebooks
- https://robertslab.github.io/tusk/modules/04-blast.html - Blast and annotation on tusk.
- https://rpubs.com/sr320/1026094 - Blast tutorial from FISH 546 (2023)
-
https://github.com/RobertsLab/code/blob/master/09-blast.ipynb - An example of how one might take a multi sequence fasta file and using NCBI Blast, compare the sequences with the Swiss-Prot Database on their own computer.
-
https://github.com/RobertsLab/code/blob/master/10-blast-2-slim.ipynb - A notebook to seamlessly take blast output to GO Slim list
-
https://github.com/RobertsLab/code/blob/master/script-box/complete_go_annotation_notebook.Rmd -
-
https://github.com/sr320/ceabigr/blob/main/code/17-Swiss-Prot-Annotation.Rmd - Blasting C virginica to Swiss-Prot. Author: Steven Roberts
Gene Ontology (GO)
Retrieve GO terms from UniProt Using SwissProt IDs
The following steps will use the UniProt Python API to create a tab-delimited file of data retrieved from UniProt.
-
Create newline-delimited file of SwissProt IDs. (e.g.
SPIDS.txt)cat SPIDS.txt Q86IC9 P04177 Q8L840 Q61043 A1E2V0 P34456 P34457 O00463 Q00945 Q5SWK7 -
Create Python file (e.g.
uniprot-retrieval.py) with the following:import re import zlib import gzip import requests from requests.adapters import HTTPAdapter, Retry import sys import shutil import os re_next_link = re.compile(r'<(.+)>; rel="next"') retries = Retry(total=5, backoff_factor=0.25, status_forcelist=[500, 502, 503, 504]) session = requests.Session() session.mount("https://", HTTPAdapter(max_retries=retries)) def get_next_link(headers): if "Link" in headers: match = re_next_link.match(headers["Link"]) if match: return match.group(1) def get_batch(batch_url): while batch_url: response = session.get(batch_url) response.raise_for_status() total = response.headers["x-total-results"] yield response, total batch_url = get_next_link(response.headers) def process_accessions(accessions): accession_batches = [accessions[i:i+500] for i in range(0, len(accessions), 500)] all_lines = [] for accession_batch in accession_batches: accession_query = '%29%20OR%20%28accession%3A'.join(accession_batch) url = f"https://rest.uniprot.org/uniprotkb/search?compressed=true&fields=accession%2Creviewed%2Cid%2Cprotein_name%2Cgene_names%2Corganism_name%2Clength%2Cgo_p%2Cgo_c%2Cgo%2Cgo_f%2Cgo_id&format=tsv&query=%28%28accession%3A{accession_query}%29%29&size=500" progress = 0 lines = [] for batch, total in get_batch(url): # Decompress each batch as we want to extract the header decompressed = zlib.decompress(batch.content, 16 + zlib.MAX_WBITS) batch_lines = [line for line in decompressed.decode("utf-8").split("\n") if line] if not progress: # First line so print TSV header lines = [batch_lines[0]] lines += batch_lines[1:] progress = len(lines) - 1 print(f"{progress} / {total}") all_lines.extend(lines) return all_lines def main(accession_file, output_dir): with open(accession_file, 'r') as f: accessions = f.read().splitlines() retrieved_data = process_accessions(accessions) # Write to a temporary gzip file temp_filename = "uniprot-retrieval-temp.tsv.gz" with gzip.open(temp_filename, "wt", encoding="utf-8") as f: f.write('\n'.join(retrieved_data)) # Determine the full output path output_path = os.path.join(output_dir, "uniprot-retrieval.tsv.gz") # Merge the temporary file with the existing output file (if it exists) try: with gzip.open(output_path, "rb") as f_existing, open(temp_filename, "rb") as f_temp: with gzip.open("uniprot-retrieval-merged.tsv.gz", "wb") as f_merged: shutil.copyfileobj(f_existing, f_merged) shutil.copyfileobj(f_temp, f_merged) # Replace the original output file with the merged file shutil.move("uniprot-retrieval-merged.tsv.gz", output_path) except FileNotFoundError: # If the existing output file doesn't exist, rename the temporary file shutil.move(temp_filename, output_path) if __name__ == '__main__': if len(sys.argv) < 3: print("Usage: python uniprot-retrieval.py <input_file> <output_directory>") sys.exit(1) accession_file = sys.argv[1] output_dir = sys.argv[2] if not os.path.exists(output_dir): os.makedirs(output_dir) main(accession_file, output_dir) -
Run the Python script:
- IMPORTANT: Requires Python >= 3!python3 uniprot-retrieval.py SPIDS.txt /path/to/desired/output/directory/- If using R Markdown, run the above in a
bashchunk:
- If using R Markdown, run the above in a
The resulting output file (uniprot-retrieval.tsv.gz) will be in the specified directory.
-
Gunzip the output file:
gunzip uniprot-retrieval.tsv.gz
The resulting file (uniprot-retrieval.tsv) will be formatted with the following columns:
| Entry | Reviewed | Entry Name | Protein names | Gene Names | Organism | Length | Gene Ontology (biological process) | Gene Ontology (cellular component) | Gene Ontology (molecular function) | Gene Ontology (GO) | Gene Ontology IDs |
|---|---|---|---|---|---|---|---|---|---|---|---|
NOTES:
-
This requires Python >= 3 to run. Simplest way to access Python 3 is via a conda environment.
-
On the first attempt, you'll likely need to install the packages that are being imported at the very beginning of the script.
-
Create an issue if you need help with any of the above.
Map GO IDs to GOslims
Below are a series of R Markdown chunks to run.
The expected input file has at least two columns. One each with:
- gene ID
- Gene Ontology (GO) ID
NOTE: The GO IDs in the GO ID column should be separated with a semi-colon.
The basic output from this process will be:
- GOslim IDs (as rownames)
- GOslim terms
- Counts of GO IDs matching to corresponding GOslim
- Percentage of GO IDs matching to corresponding GOslim
- GOIDs mapped to corresponding GOslim, in a semi-colon delimited format
There are steps after this that perform different subsetting that you may/not be interested in. They've been left in to serve as examples.
Load libraries
```{r setup, include=TRUE}
library(GSEABase)
library(GO.db)
library(knitr)
library(tidyverse)
knitr::opts_chunk$set(
echo = TRUE, # Display code chunks
eval = FALSE, # Evaluate code chunks
warning = FALSE, # Hide warnings
message = FALSE, # Hide messages
comment = "" # Prevents appending '##' to beginning of lines in code output
)
```
Variables
IMPORTANT: The user needs to provide:
-
names of the columns containing the GO IDs and the gene IDs!
-
Path or URL to input file.
After that, there's almost no need to modify any of the chunks which follow.
```{r set-variables, eval=TRUE}
# Column names corresponding to gene name/ID and GO IDs
GO.ID.column <- "Gene.Ontology.IDs"
gene.ID.column <- "gene_id"
# Relative path or URL to input file
input.file <- "https://raw.githubusercontent.com/grace-ac/paper-pycno-sswd-2021-2022/d1cdf13c36085868df4ef4b75d2b7de03ef08d1c/analyses/25-compare-2021-2022/DEGlist_same_2021-2022_forGOslim.tab"
##### Official GO info - no need to change #####
goslims_obo <- "goslim_generic.obo"
goslims_url <- "http://current.geneontology.org/ontology/subsets/goslim_generic.obo"
```
Set GSEAbase location and download goslim_generic.obo
```{r download-generic-goslim-obo, eval=TRUE}
# Find GSEAbase installation location
gseabase_location <- find.package("GSEABase")
# Load path to GOslim OBO file
goslim_obo_destintation <- file.path(gseabase_location, "extdata", goslims_obo, fsep = "/")
# Download the GOslim OBO file
download.file(url = goslims_url, destfile = goslim_obo_destintation)
# Loads package files
gseabase_files <- system.file("extdata", goslims_obo, package="GSEABase")
```
Read in gene/GO file
```{r read-in-gene-file, eval=TRUE}
full.gene.df <- read.csv(file = input.file, header = TRUE, sep = "\t")
str(full.gene.df)
```
Remove rows with NA, remove whitespace in GO IDs column and keep just gene/GO IDs columns
```{r remove-NA-and-uniprotIDs, eval=TRUE}
# Clean whitespace, filter NA/empty rows, select columns, and split GO terms using column name variables
gene.GO.df <- full.gene.df %>%
mutate(!!GO.ID.column := str_replace_all(.data[[GO.ID.column]], "\\s*;\\s*", ";")) %>% # Clean up spaces around ";"
filter(!is.na(.data[[gene.ID.column]]) & !is.na(.data[[GO.ID.column]]) & .data[[GO.ID.column]] != "") %>%
select(all_of(c(gene.ID.column, GO.ID.column)))
str(gene.GO.df)
```
This flattens the file so all of the GO IDs per gene are separated into one GO ID per gene per row.
```{r flatten-gene-and-GO-IDs, eval=TRUE}
flat.gene.GO.df <- gene.GO.df %>% separate_rows(!!sym(GO.ID.column), sep = ";")
str(flat.gene.GO.df)
```
Groups the genes by GO ID (i.e. lists all genes associated with each unique GO ID)
```{r group-by-GO, eval=TRUE}
grouped.gene.GO.df <- flat.gene.GO.df %>%
group_by(!!sym(GO.ID.column)) %>%
summarise(!!gene.ID.column := paste(.data[[gene.ID.column]], collapse = ","))
str(grouped.gene.GO.df)
```
Map GO IDs to GOslims
The mapping steps were derived from this bioconductor forum response
```{r vectorize-GOIDs, eval=TRUE}
# Vector of GO IDs
go_ids <- grouped.gene.GO.df[[GO.ID.column]]
str(go_ids)
```
Creates new OBO Collection object of just GOslims, based on provided GO IDs.
```{r extract-GOslims-from-OBO, eval=TRUE}
# Create GSEAbase GOCollection using `go_ids`
myCollection <- GOCollection(go_ids)
# Retrieve GOslims from GO OBO file set
slim <- getOBOCollection(gseabase_files)
str(slim)
```
Get Biological Process (BP) GOslims associated with provided GO IDs.
```{r retrieve-BP-GOslims, eval=TRUE}
# Retrieve Biological Process (BP) GOslims
slimdf <- goSlim(myCollection, slim, "BP", verbose)
str(slimdf)
```
Performs mapping of of GOIDs to GOslims
Returns:
- GOslim IDs (as rownames)
- GOslim terms
- Counts of GO IDs matching to corresponding GOslim
- Percentage of GO IDs matching to corresponding GOslim
- GOIDs mapped to corresponding GOslim, in a semi-colon delimited format
```{r map-GO-to-GOslims, eval=TRUE} # List of GOslims and all GO IDs from `go_ids` gomap <- as.list(GOBPOFFSPRING[rownames(slimdf)]) # Maps `go_ids` to matching GOslims mapped <- lapply(gomap, intersect, ids(myCollection)) # Append all mapped GO IDs to `slimdf` # `sapply` needed to apply paste() to create semi-colon delimited values slimdf$GO.IDs <- sapply(lapply(gomap, intersect, ids(myCollection)), paste, collapse=";") # Remove "character(0) string from "GO.IDs" column slimdf$GO.IDs[slimdf$GO.IDs == "character(0)"] <- "" # Add self-matching GOIDs to "GO.IDs" column, if not present for (go_id in go_ids) { # Check if the go_id is present in the row names if (go_id %in% rownames(slimdf)) { # Check if the go_id is not present in the GO.IDs column # Also removes white space "trimws()" and converts all to upper case to handle # any weird, "invisible" formatting issues. if (!go_id %in% trimws(toupper(strsplit(slimdf[go_id, "GO.IDs"], ";")[[1]]))) { # Append the go_id to the GO.IDs column with a semi-colon separator if (length(slimdf$GO.IDs) > 0 && nchar(slimdf$GO.IDs[nrow(slimdf)]) > 0) { slimdf[go_id, "GO.IDs"] <- paste0(slimdf[go_id, "GO.IDs"], "; ", go_id) } else { slimdf[go_id, "GO.IDs"] <- go_id } } } } str(slimdf) ```
"Flatten" file so each row is single GO ID with corresponding GOslim rownames_to_column needed to retain row name info
```{r flatten-GOslims-file, eval=TRUE}
# "Flatten" file so each row is single GO ID with corresponding GOslim
# rownames_to_column needed to retain row name info
slimdf_separated <- as.data.frame(slimdf %>%
rownames_to_column('GOslim') %>%
separate_rows(GO.IDs, sep = ";"))
# Group by unique GO ID
grouped_slimdf <- slimdf_separated %>%
filter(!is.na(GO.IDs) & GO.IDs != "") %>%
group_by(GO.IDs) %>%
summarize(GOslim = paste(GOslim, collapse = ";"),
Term = paste(Term, collapse = ";"))
str(grouped_slimdf)
```
Sorts GOslims by Count, in descending order and then
selects just the Term and Count columns.
```{r sort-and-select-slimdf-counts, eval=TRUE}
slimdf.sorted <- slimdf %>% arrange(desc(Count))
slim.count.df <- slimdf.sorted %>%
select(Term, Count)
str(slim.count.df)
```
Enrichment Analysis Visualization and Interpretation
You've completed your enrichment analysis and have a list of significantly enriched GO terms, KEGG pathways, or other functional categories. Now what? Enrichment analysis often produces hundreds of significantly enriched terms, making it challenging to distill these results into a compelling narrative and impactful visualizations for your research story.
Overview: From Results to Story
After completing enrichment analysis, you typically face these challenges:
- Identify the most important physiological processes relevant to your biological question from hundreds of enriched terms
- Create visualizations that clearly communicate key findings without overwhelming readers
- Write a coherent discussion that tells a story rather than listing enriched terms
This section provides strategies, code examples, and best practices for transforming your enrichment results into publication-ready figures and narratives. This guide assumes you already have enrichment results (e.g., from clusterProfiler, GOseq, DAVID, or similar tools).
Best Practices for Synthesizing Enrichment Results
1. Prioritize and Filter Results
Not all significantly enriched terms are equally informative. Consider:
- Biological relevance: Focus on processes directly related to your experimental design or biological question
- Term specificity: Prefer specific terms (e.g., "lipid metabolic process") over very broad terms (e.g., "metabolic process")
- Statistical significance: Use adjusted p-values (FDR/q-value < 0.05) and consider effect size (fold enrichment)
- Redundancy reduction: Many GO terms are hierarchical and redundant; simplify by selecting representative terms
Strategy: Start by filtering to the top 10-20 most significant terms, then manually curate to remove redundancy and retain biological meaning.
2. Group Related Processes
Organize enriched terms into higher-level biological themes:
- Metabolism: Energy production, biosynthesis, catabolism
- Stress response: Oxidative stress, heat shock, immune response
- Development: Cell differentiation, morphogenesis, growth
- Signaling: Cell communication, signal transduction
- Structural: Cytoskeleton, cell adhesion, extracellular matrix
This grouping helps create a coherent narrative and simplifies visualization.
3. Compare Across Conditions
If you have multiple comparisons (e.g., multiple treatments or time points):
- Identify shared enriched processes (core response)
- Identify unique enriched processes (condition-specific responses)
- Look for temporal patterns (early vs. late response)
- Consider opposing processes (up-regulated vs. down-regulated genes)
R Packages for Visualization
Essential Packages
# Install Bioconductor packages (if needed)
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install(c("enrichplot", "GOSemSim", "DOSE"))
# Install CRAN packages
install.packages(c("ggplot2", "dplyr", "tidyr", "forcats", "stringr", "RColorBrewer"))
Key packages: - enrichplot: Advanced visualization functions for enrichment results - GOSemSim: Semantic similarity to reduce redundancy - ggplot2: Customizable plotting - dplyr/tidyr: Data manipulation
Working with Your Enrichment Results
This section assumes you have enrichment results in one of these formats:
- clusterProfiler object (e.g., from
enrichGO(),enrichKEGG()) - Data frame with columns for: term ID, description, p-value, adjusted p-value, gene count, etc.
- Table from web tools (DAVID, Enrichr, etc.) exported as CSV/TSV
Loading Your Results
library(enrichplot)
library(ggplot2)
library(dplyr)
# If you have a clusterProfiler object already:
# ego_results <- readRDS("my_enrichment_results.rds")
# If you have a table from another tool, read it:
# enrichment_df <- read.csv("enrichment_results.csv")
# For this guide, we'll assume you have a clusterProfiler enrichResult object
# named 'ego_results' with your enrichment analysis results
Simplify Results (Remove Redundancy)
library(GOSemSim)
# Assuming you have enrichment results in 'ego_results'
# Simplify GO terms based on semantic similarity
ego_simplified <- simplify(ego_results,
cutoff = 0.7, # Similarity threshold (0-1)
by = "p.adjust", # Metric to select representative
select_fun = min)
# Further reduce to top N terms
top_n <- 20
ego_top <- ego_simplified[1:min(top_n, nrow(ego_simplified)), ]
# Convert to dataframe for further manipulation
ego_df <- as.data.frame(ego_simplified)
Note: If your enrichment results are from a non-clusterProfiler source (e.g., DAVID, Enrichr), you can manually filter redundant terms by: - Selecting the most specific term from hierarchical groups - Using REVIGO to cluster semantically similar terms - Prioritizing terms with the highest significance and gene counts
Creating Impactful Figures
1. Dot Plot (Most Common and Effective)
Dot plots show enriched terms with: - X-axis: Gene ratio or fold enrichment - Y-axis: GO terms - Dot size: Number of genes - Dot color: Significance (p-value or q-value)
# Basic dotplot
dotplot(ego_top,
showCategory = 20,
font.size = 10,
title = "GO Biological Process Enrichment")
# Enhanced dotplot with custom colors
dotplot(ego_top,
showCategory = 20,
font.size = 10) +
scale_color_gradient(low = "red", high = "blue") +
theme_minimal() +
theme(axis.text.y = element_text(size = 11)) +
ggtitle("Top Enriched Biological Processes in DEGs")
Best for: Showing top 15-25 enriched terms with statistical significance and gene counts at a glance.
2. Bar Plot (Clear and Simple)
# Bar plot showing count or gene ratio
barplot(ego_top,
showCategory = 15,
font.size = 10) +
ggtitle("GO Enrichment - Biological Process")
# Horizontal bar plot with custom aesthetics
ggplot(ego_df[1:15, ], aes(x = Count, y = reorder(Description, Count))) +
geom_bar(stat = "identity", aes(fill = p.adjust)) +
scale_fill_gradient(low = "red", high = "blue", name = "Adjusted\np-value") +
labs(x = "Gene Count", y = "", title = "Top 15 Enriched GO Terms") +
theme_minimal() +
theme(axis.text.y = element_text(size = 11))
Best for: Simple, publication-ready figures showing the most enriched processes.
3. Network/Enrichment Map (Shows Relationships)
Network plots display relationships between enriched terms based on shared genes:
# Pairwise term similarity
ego_pairwise <- pairwise_termsim(ego_simplified)
# Enrichment map (network plot)
emapplot(ego_pairwise,
showCategory = 30,
cex_label_category = 0.7,
layout = "nicely") +
ggtitle("Enrichment Map of GO Terms")
# Alternative: use ggraph for more control
library(ggraph)
emapplot(ego_pairwise,
showCategory = 30,
cex_label_category = 0.7,
layout = "fr") # Fruchterman-Reingold layout
Best for: Showing how enriched processes relate to each other and identifying clusters of related functions.
4. Upset Plot (For Multiple Gene Lists)
When comparing enrichment across multiple conditions:
# Assuming you have multiple enrichment results
ego_list <- list(Condition1 = ego_cond1,
Condition2 = ego_cond2,
Condition3 = ego_cond3)
# Upset plot
upsetplot(ego_list)
Best for: Comparing enriched terms across multiple experimental conditions or time points.
5. Heatmap of Enriched Terms
# Heatplot showing gene-term relationships
heatplot(ego_top,
showCategory = 15,
foldChange = gene_fc) # Optional: include fold-change values
# Custom heatmap with ggplot2
library(pheatmap)
# Prepare matrix: rows = genes, columns = GO terms
# (Requires some data wrangling)
Best for: Detailed view of which genes contribute to which enriched terms.
6. Gene-Concept Network
# Show genes associated with top enriched terms
cnetplot(ego_top,
showCategory = 5,
foldChange = gene_fc, # Optional: show gene expression
circular = FALSE,
colorEdge = TRUE)
# Circular layout
cnetplot(ego_top,
showCategory = 5,
circular = TRUE,
colorEdge = TRUE)
Best for: Highlighting specific genes driving enrichment in key processes.
Advanced Visualization Strategies
Combining Multiple Plots
library(cowplot)
library(patchwork)
# Create multiple plots
p1 <- dotplot(ego_bp, showCategory = 15) + ggtitle("Biological Process")
p2 <- dotplot(ego_mf, showCategory = 15) + ggtitle("Molecular Function")
p3 <- dotplot(ego_cc, showCategory = 15) + ggtitle("Cellular Component")
# Combine into one figure
combined_plot <- p1 | p2 | p3
ggsave("combined_GO_enrichment.png", combined_plot, width = 18, height = 6, dpi = 300)
Custom Ordering and Grouping
# Manually select and order terms by biological theme
selected_terms <- c(
# Metabolism
"lipid metabolic process",
"carbohydrate metabolic process",
# Stress response
"response to oxidative stress",
"response to heat",
# Immune
"innate immune response",
"inflammatory response"
)
# Filter and plot in custom order
ego_custom <- ego_df %>%
filter(Description %in% selected_terms) %>%
mutate(Description = factor(Description, levels = selected_terms))
ggplot(ego_custom, aes(x = GeneRatio, y = Description)) +
geom_point(aes(size = Count, color = p.adjust)) +
scale_color_gradient(low = "red", high = "blue") +
theme_minimal() +
labs(title = "Key Physiological Processes in Response to Treatment")
Adding Annotations and Context
# Add biological context to plot
dotplot(ego_top, showCategory = 15) +
annotate("rect", xmin = 0.3, xmax = 0.5, ymin = 1, ymax = 5,
alpha = 0.2, fill = "yellow") +
annotate("text", x = 0.4, y = 6,
label = "Metabolic\nreprogramming",
size = 4, fontface = "bold")
Writing a Compelling Discussion
Structure Your Narrative
- Start with the big picture: What is the overall biological theme?
-
"Enrichment analysis revealed a coordinated metabolic shift toward lipid catabolism..."
-
Present major themes, not individual terms: Group related processes
-
"Three major physiological responses emerged: (1) stress defense, (2) metabolic remodeling, and (3) immune activation"
-
Connect to your hypothesis: Link enrichment to your research question
-
"Consistent with our hypothesis that heat stress triggers energy reallocation..."
-
Highlight specific processes: Dive into 2-3 key enriched processes
-
"The enrichment of 'oxidative stress response' (q-value = 0.001, 45 genes) suggests..."
-
Integrate with gene expression patterns: Mention direction (up/down)
-
"Up-regulated genes were enriched in immune pathways, while down-regulated genes showed enrichment in growth processes"
-
Compare to literature: Reference similar findings or contrasts
-
"This aligns with previous transcriptomic studies in oysters exposed to thermal stress (Smith et al., 2020)"
-
Acknowledge limitations and complexity: Be transparent
- "While enrichment analysis provides functional insights, individual gene functions and pathway crosstalk require further investigation"
Example Discussion Paragraph
Gene ontology enrichment analysis of the 1,247 up-regulated genes revealed significant
overrepresentation of biological processes related to stress response and metabolic
remodeling (Figure 3A). Specifically, genes involved in 'response to oxidative stress'
(GO:0006979, q < 0.001, 68 genes), 'protein folding' (GO:0006457, q = 0.002, 45 genes),
and 'lipid catabolic process' (GO:0016042, q = 0.003, 52 genes) were highly enriched.
This pattern suggests a coordinated cellular response to thermal stress characterized by
both protective mechanisms (heat shock proteins, antioxidant enzymes) and metabolic
adaptation (shift from anabolic to catabolic processes). In contrast, down-regulated
genes (n = 892) showed enrichment in 'cell division' (GO:0051301, q < 0.001) and
'protein translation' (GO:0006412, q = 0.002), indicating suppression of energy-intensive
growth processes during stress. These findings align with the concept of stress-induced
growth-metabolism tradeoffs previously described in marine invertebrates (Jones et al., 2018).
Complete Workflow Example
This example assumes you already have enrichment results from your analysis.
# ===== Visualization Workflow Starting with Enrichment Results =====
library(enrichplot)
library(ggplot2)
library(dplyr)
library(GOSemSim)
# STARTING POINT: You already have enrichment results
# These could be from clusterProfiler, GOseq, or loaded from saved files
# For this example, we assume you have two enrichResult objects:
# - ego_up: enrichment results for up-regulated genes
# - ego_down: enrichment results for down-regulated genes
# If you saved your results previously, load them:
# ego_up <- readRDS("enrichment_results_up.rds")
# ego_down <- readRDS("enrichment_results_down.rds")
# 1. Simplify results to remove redundancy
ego_up_simp <- simplify(ego_up, cutoff = 0.7, by = "p.adjust", select_fun = min)
ego_down_simp <- simplify(ego_down, cutoff = 0.7, by = "p.adjust", select_fun = min)
# 2. Create publication-ready figure
p_up <- dotplot(ego_up_simp, showCategory = 15, title = "Up-regulated Genes") +
scale_color_gradient(low = "red", high = "blue")
p_down <- dotplot(ego_down_simp, showCategory = 15, title = "Down-regulated Genes") +
scale_color_gradient(low = "red", high = "blue")
# Combine plots
library(patchwork)
combined <- p_up / p_down
ggsave("Figure_GO_enrichment.png", combined, width = 10, height = 12, dpi = 300)
# 3. Export results table for supplementary materials
write.csv(as.data.frame(ego_up_simp), "Supplementary_Table_GO_up.csv", row.names = FALSE)
write.csv(as.data.frame(ego_down_simp), "Supplementary_Table_GO_down.csv", row.names = FALSE)
# 4. Create enrichment map for manuscript
ego_up_pairwise <- pairwise_termsim(ego_up_simp)
p_network <- emapplot(ego_up_pairwise, showCategory = 30) +
ggtitle("Enrichment Network - Up-regulated Genes")
ggsave("Figure_enrichment_network.png", p_network, width = 10, height = 10, dpi = 300)
Alternative: Working with enrichment results from other tools
If you have enrichment results from DAVID, Enrichr, or similar web tools:
# Load your enrichment results table
enrichment_df <- read.csv("enrichment_results.csv")
# Assuming columns: Term, P.value, Adjusted.P.value, Genes, Count
# Filter to significant terms
sig_terms <- enrichment_df %>%
filter(Adjusted.P.value < 0.05) %>%
arrange(Adjusted.P.value) %>%
head(20)
# Create a custom bar plot
ggplot(sig_terms, aes(x = Count, y = reorder(Term, Count))) +
geom_bar(stat = "identity", aes(fill = Adjusted.P.value)) +
scale_fill_gradient(low = "red", high = "blue", name = "Adjusted\np-value") +
labs(x = "Gene Count", y = "", title = "Top 20 Enriched Terms") +
theme_minimal() +
theme(axis.text.y = element_text(size = 10))
ggsave("enrichment_barplot.png", width = 8, height = 10, dpi = 300)
Alternative Approaches and Tools
Using GOplot for Circular Visualization
# Install GOplot
if (!requireNamespace("GOplot", quietly = TRUE))
install.packages("GOplot")
library(GOplot)
# Prepare data (requires specific format)
# See: https://wencke.github.io/
# Circular visualization
GOCircle(GOplot_data, nsub = 10)
REVIGO for Semantic Clustering
For reducing GO term redundancy through semantic similarity:
- Export GO terms with p-values
- Upload to REVIGO
- Visualize clustered terms
- Export representative terms
ShinyGO for Interactive Exploration
ShinyGO provides a web interface for: - Enrichment analysis - Interactive visualizations - Pathway analysis - No coding required
Tips for Publication-Quality Figures
- Font sizes: Ensure labels are readable (minimum 8-10 pt)
- Color palettes: Use colorblind-friendly palettes (viridis, RColorBrewer)
- Resolution: Export at 300 DPI for publication
- File format: PDF for vector graphics, PNG for presentations
- Simplicity: Don't show more than 20-25 terms per figure
- Consistency: Use same color schemes across figures
- White space: Don't overcrowd; consider multi-panel figures
# Colorblind-friendly palette
library(viridis)
dotplot(ego_top, showCategory = 15) +
scale_color_viridis(option = "plasma", direction = -1) +
theme_minimal(base_size = 12)
Common Pitfalls to Avoid
- Showing too many terms: More is not better; focus on top processes
- Ignoring redundancy: Simplify semantically similar terms
- Cherry-picking: Report systematic filtering criteria
- Over-interpretation: GO terms are predictions, not proof of function
- Ignoring background: Always use appropriate universe/background
- P-value only: Consider fold enrichment and gene counts too
- No biological context: Connect enrichment to your research question
Use Cases from Our Lab
-
Enrichment analysis examples - Tanner crab transcriptomics
-
C. virginica GO enrichment - Eastern oyster functional genomics
Additional Resources
R Packages Documentation: - clusterProfiler book - enrichplot documentation
Tutorials: - clusterProfiler tutorial - GO enrichment analysis workflow
Theory: - Gene Ontology Handbook - Understanding enrichment analysis
Genome features
In addition to sequence database alignment, finding spatial relationship within a genome is also an import approach for annotation. Often this is done using software tools such as bedtools.
bedtools::intersectbed
see also https://bedtools.readthedocs.io/en/latest/content/tools/intersect.html
Transcriptome (Trinity)
After transcriptome assembly using Trinity, run the numbered steps below, in order.
NOTE: The following info is long and requires the use of many programs. All of the code listed below are solely examples. Making the commands functional requires a fair amount of organization (i.e. listing paths to programs and input/output files, creating subdirectories for organizing outputs, etc.). See the Use Cases at the end of this section for a more complete picture of how to organize/run this pipeline.
-
Transdecoder
-
Identify longest open reading frames (ORFs).
-
Use transcriptome assembly and gene-trans map from Trinity assembly.
TransDecoder.LongOrfs \ --gene_trans_map Trinity.fasta.gene_trans_map \ -t Trinity.fasta"
-
-
BLASTp
-
Run blastp on long ORFs from Step 1 above.
-
Output format 6 produces a standard BLAST tab-delimited file.
-
Settings are recommended in TransDecoder documentation.
-
Peptide database (
-db uniprot_sprot.pep) is supplied with Trinotate (e.g.Trinotate-v3.1.1/admin/uniprot_sprot.pep), but can be changed to use your own version.blastp \ -query longest_orfs.pep \ -db uniprot_sprot.pep \ -max_target_seqs 1 \ -outfmt 6 \ -evalue 1e-5 \ -num_threads ${threads} \ > Trinity.fasta.blastp.outfmt6
-
-
BLASTx (
DIAMOND)-
Run
DIAMONDblastx on long ORFs from Step 1 above. -
Output format 6 produces a standard BLAST tab-delimited file.
-
Settings (
--evalueand--max-target-seqs) are recommended in TransDecoder documentation. -
--block-sizeand--index-chunksare specific to runningDIAMONDBLASTx. -
--db uniprot_sprot.dmndis aDIAMOND-formatted BLAST database. User can generate their own.``` diamond blastx \ --db uniprot_sprot.dmnd \ --query Trinity.fasta \ --out Trinity.fasta.blastx.outfmt6 \ --outfmt 6 \ --evalue 1e-4 \ --max-target-seqs 1 \ --block-size 15.0 \ --index-chunks 4 ```
-
-
pFam
-
Run pfam search on long ORFs from Step 1 above.
-
Protein hidden Markov model database (
Pfam-A.hmm) is supplied with Trinotate (e.g.Trinotate-v3.1.1/admin/Pfam-A.hmm), but can be changed to use your own version.hmmscan \ --cpu ${threads} \ --domtblout Trinity.fasta.pfam.domtblout \ Pfam-A.hmm \ longest_orfs.pep
-
-
Transdecoder
- Run Transdecoder using transcriptome assembly FastA,
blastpandPfamresults.
TransDecoder.Predict \ -t Trinity.fasta \ --retain_pfam_hits Trinity.fasta.pfam.domtblout \ --retain_blastp_hits Trinity.fasta.blastp.outfmt6 - Run Transdecoder using transcriptome assembly FastA,
-
Trinotate
-
Trinotate requires a large number of steps and programs!
-
Run
signalpsignalp \ -f short \ -n Trinity.fasta.trinotate.signalp.out \ longest_orfs.pep -
Run
tmHMMtmhmm \ --short \ < longest_orfs.pep \ > Trinity.fasta.trinotate.tmhmm.out -
Run
RNAmmer- Uses a special Trinotate implementation of
rnammer(e.g.Trinotate/util/rnammer_support/RnammerTranscriptome.pl)
RnammerTranscriptome.pl \ --transcriptome Trinity.fasta \ --path_to_rnammer rnammer - Uses a special Trinotate implementation of
-
Load transcripts and coding regions into Trinotate SQLite database
Trinotate \ Trinotate.sqlite \ init \ --gene_trans_map Trinity.fasta.gene_trans_map \ --transcript_fasta Tinity.fasta \ --transdecoder_pep longest_orfs.pep -
Load BLASTp/x homologies into SQLite database
Trinotate \ Trinotate.sqlite \ LOAD_swissprot_blastp \ Trinity.fasta.blastp.outfmt6Trinotate \ Trinotate.sqlite \ LOAD_swissprot_blastx \ Trinity.fasta.blastx.outfmt6 -
Load Pfam into SQLite database
Trinotate \ Trinotate.sqlite \ LOAD_pfam \ Trinity.fasta.pfam.domtblout -
Load transmembrane domains
Trinotate \ Trinotate.sqlite \ LOAD_tmhmm \ Trinity.fasta.trinotate.tmhmm.out -
Load signal peptides
Trinotate \ Trinotate.sqlite \ LOAD_signalp \ Trinity.fasta.trinotate.signalp.out -
Load RNAmmer
Trinotate \ Trinotate.sqlite \ LOAD_rnammer \ Trinity.fasta.rnammer.gff -
Create annotation report
Trinotate \ Trinotate.sqlite \ report \ > Trinity.fasta.annotation_report.txt -
Extract gene ontology (GO) terms from annotation report
extract_GO_assignments_from_Trinotate_xls.pl \ --Trinotate_xls Trinity.fasta.annotation_report.txt \ -G \ --include_ancestral_terms \ > Trinity.fasta.go_annotations.txt- The output file is formatted like this (
<trinity-id>``<tab>``<GO:NNNNNN,GO:NNNNN,...>):
TRINITY_DN0_c0_g1 GO:0003674,GO:0003824,GO:0003964,GO:0006139,GO:0006259,GO:0006310,GO:0006313,GO:0006725,GO:0006807,GO:0008150,GO:0008152,GO:0009987,GO:0016740,GO:0016772,GO:0016779,GO:0032196,GO:0034061,GO:0034641,GO:0043170,GO:0044237,GO:0044238,GO:0044260,GO:0044699,GO:0044710,GO:0044763,GO:0046483,GO:0071704,GO:0090304,GO:1901360 TRINITY_DN0_c10_g1 GO:0003674,GO:0003824,GO:0004659,GO:0004660,GO:0005488,GO:0005575,GO:0005829,GO:0005875,GO:0005965,GO:0006464,GO:0006807,GO:0008150,GO:0008152,GO:0008270,GO:0008318,GO:0009987,GO:0016740,GO:0016765,GO:0018342,GO:0018343,GO:0019538,GO:0032991,GO:0036211,GO:0043167,GO:0043169,GO:0043170,GO:0043234,GO:0043412,GO:0044237,GO:0044238,GO:0044260,GO:0044267,GO:0044422,GO:0044424,GO:0044430,GO:0044444,GO:0044446,GO:0044464,GO:0046872,GO:0046914,GO:0071704,GO:0097354,GO:1901564,GO:1902494,GO:1990234 TRINITY_DN0_c2_g4 GO:0000166,GO:0003674,GO:0005488,GO:0005524,GO:0005575,GO:0005737,GO:0005856,GO:0017076,GO:0030554,GO:0032553,GO:0032555,GO:0032559,GO:0035639,GO:0036094,GO:0043167,GO:0043168,GO:0043226,GO:0043228,GO:0043229,GO:0043232,GO:0044424,GO:0044464,GO:0097159,GO:0097367,GO:1901265,GO:1901363 - The output file is formatted like this (
-
-
Make transcript features annotation map
``` Trinotate_get_feature_name_encoding_attributes.pl \ Trinity.fasta.annotation_report.txt \ > Trinity.fasta.annotation_feature_map.txt ```
-