Skip to content

Annotation

Intro (Blast)

Blast is a key component of working with lesser studied taxa. Here are some resources to help with this.

First off, you should be familar with the command line interface and bash


Blast Notebooks


Gene Ontology (GO)

Retrieve GO terms from UniProt Using SwissProt IDs

The following steps will use the UniProt Python API to create a tab-delimited file of data retrieved from UniProt.

  1. Create newline-delimited file of SwissProt IDs. (e.g. SPIDS.txt)

    cat SPIDS.txt
    
    Q86IC9
    P04177
    Q8L840
    Q61043
    A1E2V0
    P34456
    P34457
    O00463
    Q00945
    Q5SWK7
    
  2. Create Python file (e.g. uniprot-retrieval.py) with the following:

    import re
    import zlib
    import gzip
    import requests
    from requests.adapters import HTTPAdapter, Retry
    import sys
    import shutil
    import os
    
    re_next_link = re.compile(r'<(.+)>; rel="next"')
    retries = Retry(total=5, backoff_factor=0.25, status_forcelist=[500, 502, 503, 504])
    session = requests.Session()
    session.mount("https://", HTTPAdapter(max_retries=retries))
    
    def get_next_link(headers):
        if "Link" in headers:
            match = re_next_link.match(headers["Link"])
            if match:
                return match.group(1)
    
    def get_batch(batch_url):
        while batch_url:
            response = session.get(batch_url)
            response.raise_for_status()
            total = response.headers["x-total-results"]
            yield response, total
            batch_url = get_next_link(response.headers)
    
    def process_accessions(accessions):
        accession_batches = [accessions[i:i+500] for i in range(0, len(accessions), 500)]
        all_lines = []
    
        for accession_batch in accession_batches:
            accession_query = '%29%20OR%20%28accession%3A'.join(accession_batch)
            url = f"https://rest.uniprot.org/uniprotkb/search?compressed=true&  fields=accession%2Creviewed%2Cid%2Cprotein_name%2Cgene_names%2Corganism_name%2Clength%2Cgo_p%2Cgo_c%2Cgo%2Cgo_f%2Cgo_id&format=tsv&   query=%28%28accession%3A{accession_query}%29%29&size=500"
    
            progress = 0
            lines = []
            for batch, total in get_batch(url):
                # Decompress each batch as we want to extract the header
                decompressed = zlib.decompress(batch.content, 16 + zlib.MAX_WBITS)
                batch_lines = [line for line in decompressed.decode("utf-8").split("\n") if line]
                if not progress:
                    # First line so print TSV header
                    lines = [batch_lines[0]]
                lines += batch_lines[1:]
                progress = len(lines) - 1
                print(f"{progress} / {total}")
    
            all_lines.extend(lines)
    
        return all_lines
    
    def main(accession_file, output_dir):
        with open(accession_file, 'r') as f:
            accessions = f.read().splitlines()
    
        retrieved_data = process_accessions(accessions)
    
        # Write to a temporary gzip file
        temp_filename = "uniprot-retrieval-temp.tsv.gz"
        with gzip.open(temp_filename, "wt", encoding="utf-8") as f:
            f.write('\n'.join(retrieved_data))
    
        # Determine the full output path
        output_path = os.path.join(output_dir, "uniprot-retrieval.tsv.gz")
    
        # Merge the temporary file with the existing output file (if it exists)
        try:
            with gzip.open(output_path, "rb") as f_existing, open(temp_filename, "rb") as f_temp:
                with gzip.open("uniprot-retrieval-merged.tsv.gz", "wb") as f_merged:
                    shutil.copyfileobj(f_existing, f_merged)
                    shutil.copyfileobj(f_temp, f_merged)
    
            # Replace the original output file with the merged file
            shutil.move("uniprot-retrieval-merged.tsv.gz", output_path)
        except FileNotFoundError:
            # If the existing output file doesn't exist, rename the temporary file
            shutil.move(temp_filename, output_path)
    
    if __name__ == '__main__':
        if len(sys.argv) < 3:
            print("Usage: python uniprot-retrieval.py <input_file> <output_directory>")
            sys.exit(1)
    
        accession_file = sys.argv[1]
        output_dir = sys.argv[2]
    
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
    
        main(accession_file, output_dir)
    
  3. Run the Python script:

    python3 uniprot-retrieval.py SPIDS.txt /path/to/desired/output/directory/
    
    - IMPORTANT: Requires Python >= 3!

    • If using R Markdown, run the above in a bash chunk:

The resulting output file (uniprot-retrieval.tsv.gz) will be in the specified directory.

  1. Gunzip the output file:

    gunzip uniprot-retrieval.tsv.gz
    

The resulting file (uniprot-retrieval.tsv) will be formatted with the following columns:

Entry Reviewed Entry Name Protein names Gene Names Organism Length Gene Ontology (biological process) Gene Ontology (cellular component) Gene Ontology (molecular function) Gene Ontology (GO) Gene Ontology IDs

NOTES:

  • This requires Python >= 3 to run. Simplest way to access Python 3 is via a conda environment.

  • On the first attempt, you'll likely need to install the packages that are being imported at the very beginning of the script.

  • Create an issue if you need help with any of the above.

Map GO IDs to GOslims

Below are a series of R Markdown chunks to run.

The expected input file has at least two columns. One each with:

  • gene ID
  • Gene Ontology (GO) ID

NOTE: The GO IDs in the GO ID column should be separated with a semi-colon.

The basic output from this process will be:

  • GOslim IDs (as rownames)
  • GOslim terms
  • Counts of GO IDs matching to corresponding GOslim
  • Percentage of GO IDs matching to corresponding GOslim
  • GOIDs mapped to corresponding GOslim, in a semi-colon delimited format

There are steps after this that perform different subsetting that you may/not be interested in. They've been left in to serve as examples.

Load libraries

```{r setup, include=TRUE}
library(GSEABase)
library(GO.db)
library(knitr)
library(tidyverse)
knitr::opts_chunk$set(
  echo = TRUE,         # Display code chunks
  eval = FALSE,        # Evaluate code chunks
  warning = FALSE,     # Hide warnings
  message = FALSE,     # Hide messages
  comment = ""         # Prevents appending '##' to beginning of lines in code output
)
```

Variables

IMPORTANT: The user needs to provide:

  • names of the columns containing the GO IDs and the gene IDs!

  • Path or URL to input file.

After that, there's almost no need to modify any of the chunks which follow.

```{r set-variables, eval=TRUE}
# Column names corresponding to gene name/ID and GO IDs
GO.ID.column <- "Gene.Ontology.IDs"
gene.ID.column <- "gene_id"

# Relative path or URL to input file
input.file <- "https://raw.githubusercontent.com/grace-ac/paper-pycno-sswd-2021-2022/d1cdf13c36085868df4ef4b75d2b7de03ef08d1c/analyses/25-compare-2021-2022/DEGlist_same_2021-2022_forGOslim.tab"


##### Official GO info - no need to change #####
goslims_obo <- "goslim_generic.obo"
goslims_url <- "http://current.geneontology.org/ontology/subsets/goslim_generic.obo"
```

Set GSEAbase location and download goslim_generic.obo

```{r download-generic-goslim-obo, eval=TRUE}
# Find GSEAbase installation location
gseabase_location <- find.package("GSEABase")

# Load path to GOslim OBO file
goslim_obo_destintation <- file.path(gseabase_location, "extdata", goslims_obo, fsep = "/")

# Download the GOslim OBO file
download.file(url = goslims_url, destfile = goslim_obo_destintation)

# Loads package files
gseabase_files <- system.file("extdata", goslims_obo, package="GSEABase")
```

Read in gene/GO file

```{r read-in-gene-file, eval=TRUE}
full.gene.df <- read.csv(file = input.file, header = TRUE, sep = "\t")

str(full.gene.df)
```

Remove rows with NA, remove whitespace in GO IDs column and keep just gene/GO IDs columns

```{r remove-NA-and-uniprotIDs, eval=TRUE}

# Clean whitespace, filter NA/empty rows, select columns, and split GO terms using column name variables
gene.GO.df <- full.gene.df %>%
  mutate(!!GO.ID.column := str_replace_all(.data[[GO.ID.column]], "\\s*;\\s*", ";")) %>% # Clean up spaces around ";"
  filter(!is.na(.data[[gene.ID.column]]) & !is.na(.data[[GO.ID.column]]) & .data[[GO.ID.column]] != "") %>% 
  select(all_of(c(gene.ID.column, GO.ID.column)))


str(gene.GO.df)
```

This flattens the file so all of the GO IDs per gene are separated into one GO ID per gene per row.

```{r flatten-gene-and-GO-IDs, eval=TRUE}
flat.gene.GO.df <- gene.GO.df %>% separate_rows(!!sym(GO.ID.column), sep = ";")

str(flat.gene.GO.df)
```

Groups the genes by GO ID (i.e. lists all genes associated with each unique GO ID)

```{r group-by-GO, eval=TRUE}
grouped.gene.GO.df <- flat.gene.GO.df %>%
  group_by(!!sym(GO.ID.column)) %>%
  summarise(!!gene.ID.column := paste(.data[[gene.ID.column]], collapse = ","))

str(grouped.gene.GO.df)
```

Map GO IDs to GOslims

The mapping steps were derived from this bioconductor forum response

```{r vectorize-GOIDs, eval=TRUE}
# Vector of GO IDs
go_ids <- grouped.gene.GO.df[[GO.ID.column]]

str(go_ids)
```

Creates new OBO Collection object of just GOslims, based on provided GO IDs.

```{r extract-GOslims-from-OBO, eval=TRUE}

# Create GSEAbase GOCollection using `go_ids`
myCollection <- GOCollection(go_ids)

# Retrieve GOslims from GO OBO file set
slim <- getOBOCollection(gseabase_files)

str(slim)
```

Get Biological Process (BP) GOslims associated with provided GO IDs.

```{r retrieve-BP-GOslims, eval=TRUE}
# Retrieve Biological Process (BP) GOslims
slimdf <- goSlim(myCollection, slim, "BP", verbose)
str(slimdf)
```

Performs mapping of of GOIDs to GOslims

Returns:

  • GOslim IDs (as rownames)
  • GOslim terms
  • Counts of GO IDs matching to corresponding GOslim
  • Percentage of GO IDs matching to corresponding GOslim
  • GOIDs mapped to corresponding GOslim, in a semi-colon delimited format
    ```{r map-GO-to-GOslims, eval=TRUE}
    # List of GOslims and all GO IDs from `go_ids`
    gomap <- as.list(GOBPOFFSPRING[rownames(slimdf)])
    
    # Maps `go_ids` to matching GOslims
    mapped <- lapply(gomap, intersect, ids(myCollection))
    
    # Append all mapped GO IDs to `slimdf`
    # `sapply` needed to apply paste() to create semi-colon delimited values
    slimdf$GO.IDs <- sapply(lapply(gomap, intersect, ids(myCollection)), paste, collapse=";")
    
    # Remove "character(0) string from "GO.IDs" column
    slimdf$GO.IDs[slimdf$GO.IDs == "character(0)"] <- ""
    
    # Add self-matching GOIDs to "GO.IDs" column, if not present
    for (go_id in go_ids) {
      # Check if the go_id is present in the row names
      if (go_id %in% rownames(slimdf)) {
        # Check if the go_id is not present in the GO.IDs column
        # Also removes white space "trimws()" and converts all to upper case to handle
        # any weird, "invisible" formatting issues.
        if (!go_id %in% trimws(toupper(strsplit(slimdf[go_id, "GO.IDs"], ";")[[1]]))) {
          # Append the go_id to the GO.IDs column with a semi-colon separator
          if (length(slimdf$GO.IDs) > 0 && nchar(slimdf$GO.IDs[nrow(slimdf)]) > 0) {
            slimdf[go_id, "GO.IDs"] <- paste0(slimdf[go_id, "GO.IDs"], "; ", go_id)
          } else {
            slimdf[go_id, "GO.IDs"] <- go_id
          }
        }
      }
    }
    
    str(slimdf)
    ```
    

"Flatten" file so each row is single GO ID with corresponding GOslim rownames_to_column needed to retain row name info

```{r flatten-GOslims-file, eval=TRUE}
# "Flatten" file so each row is single GO ID with corresponding GOslim
# rownames_to_column needed to retain row name info
slimdf_separated <- as.data.frame(slimdf %>%
  rownames_to_column('GOslim') %>%
  separate_rows(GO.IDs, sep = ";"))

# Group by unique GO ID
grouped_slimdf <- slimdf_separated %>%
  filter(!is.na(GO.IDs) & GO.IDs != "") %>%
  group_by(GO.IDs) %>%
  summarize(GOslim = paste(GOslim, collapse = ";"),
            Term = paste(Term, collapse = ";"))


str(grouped_slimdf)
```

Sorts GOslims by Count, in descending order and then selects just the Term and Count columns.

```{r sort-and-select-slimdf-counts, eval=TRUE}

slimdf.sorted <- slimdf %>% arrange(desc(Count))

slim.count.df <- slimdf.sorted %>% 
  select(Term, Count)

str(slim.count.df)
```


Genome features

In addition to sequence database alignment, finding spatial relationship within a genome is also an import approach for annotation. Often this is done using software tools such as bedtools.

bedtools::intersectbed

see also https://bedtools.readthedocs.io/en/latest/content/tools/intersect.html


Transcriptome (Trinity)

After transcriptome assembly using Trinity, run the numbered steps below, in order.

NOTE: The following info is long and requires the use of many programs. All of the code listed below are solely examples. Making the commands functional requires a fair amount of organization (i.e. listing paths to programs and input/output files, creating subdirectories for organizing outputs, etc.). See the Use Cases at the end of this section for a more complete picture of how to organize/run this pipeline.

  1. Transdecoder

    • Identify longest open reading frames (ORFs).

    • Use transcriptome assembly and gene-trans map from Trinity assembly.

      TransDecoder.LongOrfs \
      --gene_trans_map Trinity.fasta.gene_trans_map \
      -t Trinity.fasta"
      
  2. BLASTp

    • Run blastp on long ORFs from Step 1 above.

    • Output format 6 produces a standard BLAST tab-delimited file.

    • Settings are recommended in TransDecoder documentation.

    • Peptide database (-db uniprot_sprot.pep) is supplied with Trinotate (e.g. Trinotate-v3.1.1/admin/uniprot_sprot.pep), but can be changed to use your own version.

      blastp \
      -query longest_orfs.pep \
      -db uniprot_sprot.pep \
      -max_target_seqs 1 \
      -outfmt 6 \
      -evalue 1e-5 \
      -num_threads ${threads} \
      > Trinity.fasta.blastp.outfmt6
      
  3. BLASTx (DIAMOND)

    • Run DIAMOND blastx on long ORFs from Step 1 above.

    • Output format 6 produces a standard BLAST tab-delimited file.

    • Settings (--evalue and --max-target-seqs) are recommended in TransDecoder documentation.

    • --block-size and --index-chunks are specific to running DIAMOND BLASTx.

    • --db uniprot_sprot.dmnd is a DIAMOND-formatted BLAST database. User can generate their own.

      ```
      diamond blastx \
      --db uniprot_sprot.dmnd \
      --query Trinity.fasta \
      --out Trinity.fasta.blastx.outfmt6 \
      --outfmt 6 \
      --evalue 1e-4 \
      --max-target-seqs 1 \
      --block-size 15.0 \
      --index-chunks 4
      ```
      
  4. pFam

    • Run pfam search on long ORFs from Step 1 above.

    • Protein hidden Markov model database (Pfam-A.hmm) is supplied with Trinotate (e.g. Trinotate-v3.1.1/admin/Pfam-A.hmm), but can be changed to use your own version.

      hmmscan \
      --cpu ${threads} \
      --domtblout Trinity.fasta.pfam.domtblout \
      Pfam-A.hmm \
      longest_orfs.pep
      
  5. Transdecoder

    • Run Transdecoder using transcriptome assembly FastA, blastp and Pfam results.
    TransDecoder.Predict \
        -t Trinity.fasta \
        --retain_pfam_hits Trinity.fasta.pfam.domtblout \
        --retain_blastp_hits Trinity.fasta.blastp.outfmt6
    
  6. Trinotate

    • Trinotate requires a large number of steps and programs!

      • Run signalp

        signalp \
        -f short \
        -n Trinity.fasta.trinotate.signalp.out \
        longest_orfs.pep
        
      • Run tmHMM

        tmhmm \
        --short \
        < longest_orfs.pep \
        > Trinity.fasta.trinotate.tmhmm.out
        
      • Run RNAmmer

        • Uses a special Trinotate implementation of rnammer (e.g. Trinotate/util/rnammer_support/RnammerTranscriptome.pl)
        RnammerTranscriptome.pl \
        --transcriptome Trinity.fasta \
        --path_to_rnammer rnammer
        
      • Load transcripts and coding regions into Trinotate SQLite database

        Trinotate \
        Trinotate.sqlite \
        init \
        --gene_trans_map Trinity.fasta.gene_trans_map \
        --transcript_fasta Tinity.fasta \
        --transdecoder_pep longest_orfs.pep
        
      • Load BLASTp/x homologies into SQLite database

        Trinotate \
        Trinotate.sqlite \
        LOAD_swissprot_blastp \
        Trinity.fasta.blastp.outfmt6
        
        Trinotate \
        Trinotate.sqlite \
        LOAD_swissprot_blastx \
        Trinity.fasta.blastx.outfmt6
        
      • Load Pfam into SQLite database

        Trinotate \
        Trinotate.sqlite \
        LOAD_pfam \
        Trinity.fasta.pfam.domtblout
        
      • Load transmembrane domains

        Trinotate \
        Trinotate.sqlite \
        LOAD_tmhmm \
        Trinity.fasta.trinotate.tmhmm.out
        
      • Load signal peptides

        Trinotate \
        Trinotate.sqlite \
        LOAD_signalp \
        Trinity.fasta.trinotate.signalp.out
        
      • Load RNAmmer

        Trinotate \
        Trinotate.sqlite \
        LOAD_rnammer \
        Trinity.fasta.rnammer.gff
        
      • Create annotation report

        Trinotate \
        Trinotate.sqlite \
        report \
        > Trinity.fasta.annotation_report.txt
        
      • Extract gene ontology (GO) terms from annotation report

        extract_GO_assignments_from_Trinotate_xls.pl \
        --Trinotate_xls Trinity.fasta.annotation_report.txt \
        -G \
        --include_ancestral_terms \
        > Trinity.fasta.go_annotations.txt
        
        • The output file is formatted like this (<trinity-id>``<tab>``<GO:NNNNNN,GO:NNNNN,...>):
        TRINITY_DN0_c0_g1   GO:0003674,GO:0003824,GO:0003964,GO:0006139,GO:0006259,GO:0006310,GO:0006313,GO:0006725,GO:0006807,GO:0008150,GO:0008152,GO:0009987,GO:0016740,GO:0016772,GO:0016779,GO:0032196,GO:0034061,GO:0034641,GO:0043170,GO:0044237,GO:0044238,GO:0044260,GO:0044699,GO:0044710,GO:0044763,GO:0046483,GO:0071704,GO:0090304,GO:1901360
        TRINITY_DN0_c10_g1  GO:0003674,GO:0003824,GO:0004659,GO:0004660,GO:0005488,GO:0005575,GO:0005829,GO:0005875,GO:0005965,GO:0006464,GO:0006807,GO:0008150,GO:0008152,GO:0008270,GO:0008318,GO:0009987,GO:0016740,GO:0016765,GO:0018342,GO:0018343,GO:0019538,GO:0032991,GO:0036211,GO:0043167,GO:0043169,GO:0043170,GO:0043234,GO:0043412,GO:0044237,GO:0044238,GO:0044260,GO:0044267,GO:0044422,GO:0044424,GO:0044430,GO:0044444,GO:0044446,GO:0044464,GO:0046872,GO:0046914,GO:0071704,GO:0097354,GO:1901564,GO:1902494,GO:1990234
        TRINITY_DN0_c2_g4   GO:0000166,GO:0003674,GO:0005488,GO:0005524,GO:0005575,GO:0005737,GO:0005856,GO:0017076,GO:0030554,GO:0032553,GO:0032555,GO:0032559,GO:0035639,GO:0036094,GO:0043167,GO:0043168,GO:0043226,GO:0043228,GO:0043229,GO:0043232,GO:0044424,GO:0044464,GO:0097159,GO:0097367,GO:1901265,GO:1901363
        
    • Make transcript features annotation map

      ```
      Trinotate_get_feature_name_encoding_attributes.pl \
      Trinity.fasta.annotation_report.txt \
      > Trinity.fasta.annotation_feature_map.txt
      ```